7 OpenZeppelin | security

OIF Broadcaster
Audit

|'I| "
L B
i) K

OFEM IMTENTS
FRAHEIORE

November 26, 2025

Table of Contents

Table of Contents 2
Summary 4
Scope 5
System Overview 6
ERC-7888 Implementation 6
RLP Library Implementation 6
BroadcasterOracle for the OIF Protocol 7
Security Model and Trust Assumptions 7
ERC-7888 7
RLP Library 8
BroadcasterOracle and Route Constraints 8
Privileged Roles 8
High Severity 10
H-01 Prover Copies Cannot Be Updated 10

Potential for Arbitrary Application in Message Verification 10
Low Severity 11
L-01 Missing Version Validation 11
L-02 Lack of Validation for Payload Length 11
L-03 RLP Address Encoding Allows Leading Zero Bytes 11
L-04 RLP Address Decoding Allows Only Fixed Address Lengths 12
L-05 Stuck Oracle Verifications for Migrated Chains 13
Notes & Additional Information 14
N-01 Gas Optimization 14
N-02 Incomplete Docstrings 14
N-083 Floating Pragma 15
N-04 Missing Docstrings 15
N-05 Use Custom Errors 16
N-06 Inconsistent Use of Returns in Functions 16
N-07 Ambiguous Documentation Of bytes[] Encoding 16
N-08 Unreachable Checks 17
N-09 Misleading Documentation 17
N-10 Non-Canonical Long-string Decoding Acceptance 18
N-11 Inconsistent Integer Base in Inline Assembly When Setting RLP Prefixes 18

7 OpenZeppelin OIF Broadcaster Audit — Table of Contents — 2

Conclusion 19

7 OpenZeppelin OIF Broadcaster Audit — Table of Contents — 3

Summary

Type Library

Timeline From 2025-10-27
To 2025-10-31

Languages Solidity

Total Issues

Critical Severity
Issues

High Severity
Issues

Medium Severity
Issues

18 (12resolved, 1 partially resolved)

0 (Oresolved)

1 (1resolved)

1 (Oresolved)

Low Severity Issues 5 (2resolved)

Notes & Additional 11 (9resolved, 1 partially resolved)

Information

7 OpenZeppelin

OIF Broadcaster Audit — Summary — 4

Scope

OpenZeppelin audited 3 different scopes.

The first one was the openintentsframework/broadcaster repository at commit 3522b4c.

In scope were the following files:

contracts

— interfaces

| }— IBlockHashProver.sol
| |— IBlockHashProverPointer.sol
| }— IBroadcaster.sol

| L— IReceiver.sol

— libraries

L— ProverUtils.sol

— BlockHashProverPointer.sol

— Broadcaster.sol

L— Receiver.sol

The second one was the OpenZeppelin/openzeppelin-contracts repository at commit d9f966f1.

In scope were the following files:

contracts
L— utils
L— RLP.sol

The third one was the openintentsframework/oif-contracts repository at commit acc7f9c.

In scope were the following files:

src
L— integrations
L— oracles
L— broadcaster
L— BroadcasterOracle.sol

7 OpenZeppelin OIF Broadcaster Audit — Scope — 5

https://github.com/openintentsframework/broadcaster
https://github.com/openintentsframework/broadcaster/commit/3522b4c7c958ce254497b879cc1f6106131c7e3e
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/d9f966fc3f7c4eec7f565c2442cc64481e7fb499
https://github.com/openintentsframework/oif-contracts
https://github.com/openintentsframework/oif-contracts/tree/acc7f9ca32ccd9e133f00c644251d7ff976edb24

System Overview

The present audit encompasses three distinct scopes focusing on foundational components
for cross-chain interoperability and data validation within the Open Intents Framework (OIF)
ecosystem. Together, these scopes aim to provide reliable message verification, standardized
data encoding, and secure broadcasting mechanisms across heterogeneous blockchain
environments.

ERC-7888 Implementation

The first scope centers on the ERC-7888 standard, which defines a generalized framework for
cross-chain message verification. This implementation introduces three core contracts
Broadcaster, Receiver, and BlockHashProverPointer alongside a supporting
library, ProverUtils.

Broadcaster contracts are responsible for emitting verifiable messages on the source chain,
anchoring communication between related blockchain networks. On the other hand,
Receiver contracts facilitate message ingestion on the destination chain, ensuring that only
verified and finalized data originating from trusted sources are processed.

BlockHashProverPointer provides a flexible referencing mechanism that links to specific
BlockHashProver implementations. These provers serve as the cryptographic bridge
between chains by verifying account data and storage slots within state roots and storage
Merkle Patricia tries.

By modularizing verification logic, ERC-7888 enables adaptable cross-chain communication
that can evolve alongside chain upgrades or alternative verification mechanisms while
maintaining strong guarantees of authenticity and consistency.

RLP Library Implementation

The second scope involves the development of a dedicated RLP (Recursive Length Prefix)
library to handle data serialization and deserialization in accordance with Ethereum’s canonical
encoding format. The library provides efficient methods for encoding structured data into RLP
format and decoding RLP-encoded payloads back into their constituent elements. Correct RLP

7 OpenZeppelin OIF Broadcaster Audit — System Overview — 6

implementation is critical for interoperability, as it ensures deterministic data interpretation
across systems and contracts relying on Ethereum-compatible encoding.

BroadcasterOracle for the OIF Protocol

The third scope focuses on the implementation of a BroadcasterOracle contract,
designed for the Open Intents Framework (OIF), a modular, intent-based cross-chain protocol.
The OIF enables users to define and execute complex cross-chain intents, supporting
customizable asset delivery and validation conditions that can be fulfilled permissionlessly by
open solvers.

Operating as a component of OIF’s smart contract layer, the BroadcasterOracle contract
establishes reliable communication between broadcasted messages and on-chain verifiers. It
aligns with OIF’s output-input separation model, allowing independent asset collection and
delivery flows, such as Output First and Input Second, via resource locks or escrow
mechanisms. Through this architecture, BroadcasterOracle contributes to a
permissionless, extensible settlement infrastructure capable of supporting hybrid and cross-
chain financial workflows.

Security Model and Trust
Assumptions

Each scope introduces unique trust assumptions and operational constraints that collectively
define the system’s security model.

ERC-7888

+ Pointer Ownership and Upgrades: The BlockHashProverPointer contract relies on
its owner to correctly update references to valid BlockHashProver implementations.
A malicious or negligent owner could either DoS the system or facilitate forged
messages by redirecting the pointer to a fraudulent prover.

+ Chain Consistency: When updating to a new BlockHashProver, the home and target
chain must remain identical to the previous configuration. This is a property that cannot
be programmatically verified.

7 OpenZeppelin OIF Broadcaster Audit — Security Model and Trust Assumptions — 7

» Chain Upgrades: Protocol security depends on stable chain storage structures. If a
chain upgrade modifies where block hashes are stored (e.g., repurposing mappings on a
parent chain), older BlockHashProvers might yield invalid or stale block hashes,
potentially allowing receivers to ingest forged data.

* Message Guarantees: The ERC ensures that messages can be read (given finalization),
but not that they will be read. Since finalization occurs sequentially across chains,
message availability depends on cumulative finalization time along the route.

RLP Library

The main risk associated with the RLP library concerns boolean decoding semantics.
Decoding a boolean as an integer introduces a potential mismatch with single-byte encoding
expectations. This can lead to inconsistent interpretations in downstream logic where a
boolean value’s binary length carries semantic importance.

BroadcasterOracle and Route Constraints

*In the BroadcasterOracle implementation, the owner holds the ability to set the
broadcaster ID across destination chains. Once a route is constrained, it cannot be
updated. Consequently, if a chain later changes its settlement layer and requires a
different route to reach the broadcaster, the route becomes irreversibly bricked,
preventing further message propagation and effectively locking communication for that
chain.

+ Applications built on top are assumed to implement the corresponding checks to prevent
double spending, multiple cross-chain verification, etc.

Privileged Roles
Throughout the system, the following privileged roles have been identified:

- BlockHashProverPointer Owner: Maintains administrative control over prover
references. Responsible for ensuring that updates to the pointer reference valid and
compatible BlockHashProver implementations. Failure to manage this correctly can
result in message forgery or DoS conditions.

7 OpenZeppelin OIF Broadcaster Audit — Security Model and Trust Assumptions — 8

* BroadcasterOracle Owner: Holds the authority to configure broadcaster IDs and
define message routes across destination chains. This role must be exercised with
caution, as constrained routes are immutable, and improper configuration can
permanently disrupt inter-chain connectivity.

* Receiver Callers: Although not privileged in the administrative sense, Receiver callers
bear the responsibility of selectively reading valid messages, as ERC-7888 does not
enforce message liveness or delivery guarantees.

Together, these roles and assumptions define the operational security model for the audited
components, emphasizing cautious upgrade practices, responsible ownership, and alignment
between protocol-level guarantees and system-level integrity.

7 OpenZeppelin OIF Broadcaster Audit — Security Model and Trust Assumptions — 9

High Severity

H-01 Prover Copies Cannot Be Updated

The updateBlockHashProverCopy function allows for updating the address of a copy of a
remote chain prover to a new version within the local chain. Before updating the
implementation, this function ensures that the version of the prover at the new address is

greater than the version of the prover at the old address.

However, an issue arises because the blockHashProverCopies mapping is initialized to
the zero address. As a result, any attempt to update a prover copy reverts when calling the
version getter on the zero address, causing the update to be blocked. This limitation
prevents the receiver contract from correctly verifying messages from chains that involve

multiple routes.

Consider performing the version check only when an implementation address for a copy has

been set.

Update: Resolved at pull request #29 at commit b66e918.

Potential for Arbitrary Application in
Message Verification

When a proof of filled payloads is submitted, the source refers to the address of the
application that has attested to the data. However, the broadcast message lacks any
information about the application. Consequently, when a user verifies the message on another
chain, they may provide an arbitrary application within messageData . Since the message
does not contain any information to identify the application, this arbitrary value is used directly

inthe _attestations mapping without validation.

Consider adding the application information into the message hash so that it can be

validated during message verification.

7 OpenZeppelin OIF Broadcaster Audit — High Severity — 10

https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/src/contracts/Receiver.sol#L43-L66
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/src/contracts/Receiver.sol#L43-L66
https://github.com/openintentsframework/broadcaster/pull/29
https://github.com/openintentsframework/broadcaster/pull/29/commits/b66e918e3c6f451553293d3edb9dd58a9b5a7073#diff-776091b07a33e3f8c1ce0a26a43ef84f670f2babb7f5c1fa6e9ec728b32fcf85
https://github.com/openintentsframework/oif-contracts/blob/acc7f9ca32ccd9e133f00c644251d7ff976edb24/src/integrations/oracles/broadcaster/BroadcasterOracle.sol#L108
https://github.com/openintentsframework/oif-contracts/blob/acc7f9ca32ccd9e133f00c644251d7ff976edb24/src/integrations/oracles/broadcaster/BroadcasterOracle.sol#L108
https://github.com/openintentsframework/oif-contracts/blob/acc7f9ca32ccd9e133f00c644251d7ff976edb24/src/integrations/oracles/broadcaster/BroadcasterOracle.sol#L144-L152
https://github.com/openintentsframework/oif-contracts/blob/acc7f9ca32ccd9e133f00c644251d7ff976edb24/src/integrations/oracles/broadcaster/BroadcasterOracle.sol#L144-L152
https://github.com/openintentsframework/oif-contracts/blob/acc7f9ca32ccd9e133f00c644251d7ff976edb24/src/integrations/oracles/broadcaster/BroadcasterOracle.sol#L82-L83
https://github.com/openintentsframework/oif-contracts/blob/acc7f9ca32ccd9e133f00c644251d7ff976edb24/src/integrations/oracles/broadcaster/BroadcasterOracle.sol#L82-L83
https://github.com/openintentsframework/oif-contracts/blob/acc7f9ca32ccd9e133f00c644251d7ff976edb24/src/integrations/oracles/broadcaster/BroadcasterOracle.sol#L96
https://github.com/openintentsframework/oif-contracts/blob/acc7f9ca32ccd9e133f00c644251d7ff976edb24/src/integrations/oracles/broadcaster/BroadcasterOracle.sol#L96
https://github.com/openintentsframework/oif-contracts/blob/acc7f9ca32ccd9e133f00c644251d7ff976edb24/src/integrations/oracles/broadcaster/BroadcasterOracle.sol#L96

Update: Acknowledged, will resolve. Drafted fix in pull request #160 at commit 1872a01.

Low Severity

L-01 Missing Version Validation

When BlockHashProverPointer sets the implementation address for the first time, it does
not perform any validation at all. However, all subsequent implementation changes validate

that the new version keeps increasing compared to the old one. If the initial implementation

does not support the version function, the pointer will not be able to set a new address
again. This is because the check for the increasing version will fail when it attempts to call the
version method on the old implementation.

Consider checking that the initial implementation supports the version method.

Update: Resolved at pull request #38 at commit 807810f.

L-02 Lack of Validation for Payload Length

Currently, there is no limit on the number of payloads that can be submitted to

BroadcasterOracle. However, during the message verification process, the system
extracts the length of the array of payloads using only 2 bytes of data. As a result, if the
number of payloads submitted to the oracle exceeds the limit that can be represented by 2

bytes, the message will not be verifiable on the destination chain.
Consider limiting the amount of payloads allowed on the submit function.

Update: Resolved at pull request #159 at commit fb9575a.

L-03 RLP Address Encoding Allows Leading Zero
Bytes

The RLP library currently encodes an address as a 20-byte array. This representation can
contain leading zero bytes.

This is not necessarily a problem in itself. However, the Ethereum Yellow Paper states the

following:

7 OpenZeppelin OIF Broadcaster Audit — Low Severity — 11

https://github.com/openintentsframework/oif-contracts/pull/160
https://github.com/openintentsframework/oif-contracts/pull/160/commits/1872a01dbc501696734d176319bf483a2eeb4942
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/src/contracts/BlockHashProverPointer.sol#L34-L35
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/src/contracts/BlockHashProverPointer.sol#L34-L35
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/src/contracts/BlockHashProverPointer.sol#L28-L33
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/src/contracts/BlockHashProverPointer.sol#L28-L33
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/src/contracts/BlockHashProverPointer.sol#L28-L33
https://github.com/openintentsframework/broadcaster/pull/38
https://github.com/openintentsframework/broadcaster/pull/38/commits/807810f6b8a2bdfc380f9c0d0ee0fdbcc6b858b8
https://github.com/openintentsframework/oif-contracts/blob/acc7f9ca32ccd9e133f00c644251d7ff976edb24/src/integrations/oracles/broadcaster/BroadcasterOracle.sol#L107-L116
https://github.com/openintentsframework/oif-contracts/blob/acc7f9ca32ccd9e133f00c644251d7ff976edb24/src/integrations/oracles/broadcaster/BroadcasterOracle.sol#L82-L83
https://github.com/openintentsframework/oif-contracts/blob/acc7f9ca32ccd9e133f00c644251d7ff976edb24/src/libs/MessageEncodingLib.sol#L61
https://github.com/openintentsframework/oif-contracts/pull/159
https://github.com/openintentsframework/oif-contracts/pull/159/commits/fb9575a12838116642c4ade6cfe5fbee12f068b9
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d9f966fc3f7c4eec7f565c2442cc64481e7fb499/contracts/utils/RLP.sol#L123-L130
https://ethereum.github.io/yellowpaper/paper.pdf

When interpreting RLP data, if an expected fragment is decoded as a scalar and
leading zeroes are found in the byte sequence, clients are required to consider it non-
canonical and treat it in the same manner as otherwise invalid RLP data, dismissing it
completely.

This ambiguity could cause implementations that treat the address as a scalar value to fail
when decoding RLP data containing an address with a leading zero.

To obtain better compatibility and alignment with the specification, consider treating the
address as a scalar value and encoding it using its uint256 representation. In this case,
any leading zeroes will not be included in the encoded byte array.

Update: Acknowledged, not resolved. The team stated:

After some reviewing, the conclusion is that encoding without the leading zeros would
not be consistent with the current ethereum ecosystem. If someone wants to encode an
Address without the leading zeros, they can manually do the casting to uint256 and
then call the corresponding encode function. However this should not be the default

encoding.

L-04 RLP Address Decoding Allows Only Fixed
Address Lengths

The RLP library's address decoding function currently only allows encoded addresses with
lengths of 1 byte (for address(0) to address(127)) or 21 bytes (a 0x94 prefix followed
by 20 bytes of the address).

This is not necessarily a problem in itself. However, this strict check means the implementation
does not treat the address as a scalar. The Ethereum Yellow Paper states:

When interpreting RLP data, if an expected fragment is decoded as a scalar and
leading zeroes are found in the byte sequence, clients are required to consider it non-
canonical and treat it in the same manner as otherwise invalid RLP data, dismissing it
completely.

This ambiguity could cause the decoder to fail when processing addresses encoded as scalar
values by other implementations, which might omit leading zeros and thus have different
lengths.

To obtain better compatibility and alignment with the specification, consider treating the
address as a scalar value and decoding it using its uint256 representation. In this case,

7 OpenZeppelin OIF Broadcaster Audit — Low Severity — 12

https://ethereum.github.io/yellowpaper/paper.pdf

the implementation will support the decoding of addresses expressed as scalars with an
arbitrary length, and the length check could be simplified to length <= 21.

Update: Acknowledged, not resolved. The team stated:

After some reviewing, the conclusion is that encoding without the leading zeros would
not be consistent with the current ethereum ecosystem. If someone wants to encode an
Address without the leading zeros, they can manually do the casting to uint256 and
then call the corresponding encode function. However this should not be the default

encoding.

L-05 Stuck Oracle Verifications for Migrated
Chains

The owner of the BroadcasterOracle contract is responsible for setting the
broadcasterId for a specific chain. This setting is immutable, meaning, it cannot be

changed after it is initially set.

This immutability is problematic given the possibility that L2s may change their settlement
layer. For example, the migration of the settlement layer of ZKchains from Ethereum to the

Gateway illustrates this scenario. When an L2 changes its parent chain, the route to verify
messages adds a new pointer. This will cause the broadcasterId accumulator to change.
Therefore, if the mapping is not updatable, the new accumulator will not match the stored
broadcasterId, which would halt oracle verifications for that chain.

Consider adding a mechanism to update the broadcasterId for a chain in the event it
changes its parent chain.

Update: Acknowledged, not resolved. The team stated:

The team understands the issue but it is a design choice to have the setting the
broadcasterId for a specific chain immutable. The idea is to have the least trust
requirements possible on the oracle. In this case, although we need an owner to update
the mapping, in order to decrease the trust assumptions, we believe it's better to not
allow for updates on it, so users and solvers are sure that the oracle won't change. We
also believe that a chain changing its parent chain is probably a rare event and, if that

happens, we could always deploy a new oracle.

7 OpenZeppelin OIF Broadcaster Audit — Low Severity — 13

https://github.com/openintentsframework/oif-contracts/blob/acc7f9ca32ccd9e133f00c644251d7ff976edb24/src/oracles/ChainMap.sol#L39-L59
https://docs.zksync.io/zksync-protocol/gateway
https://docs.zksync.io/zksync-protocol/gateway

Notes & Additional
Information

N-01 Gas Optimization

Within the BlockHashProverPointer contract, inthe setImplementationAddress
function, the implementationAddress storage variable is fetched twice within the same
scope. This results in an unnecessary sload operation.

Consider caching implementationAddress to avoid the extra storage read.

Update: Resolved at pull request #38 at commit 807810f.

N-02 Incomplete Docstrings

Throughout the codebase, multiple instances of incomplete docstrings were identified:

*In BlockHashProverPointer.sol, the implementationCodeHash function has

no documentation for the returned value.
*In Broadcaster.sol, the hasBroadcasted function has no documentation for

parameters.

*In Receiver.sol, the blockHashProverCopy function has no documentation for
the parameter nor for the returned value.

*In IReceiver.sol, the blockHashProverCopy function has no documentation for
the bhpPointerId parameter nor the returned value. Even though the interface has
been extracted directly from the EIP specification, it is highly recommended to add this
documentation.

Consider thoroughly documenting all functions/events (and their parameters or return values)
that are part of a contract's public APl. When writing docstrings, consider following the
Ethereum Natural Specification Format (NatSpec).

Update: Resolved in pull request #39 at commit 2d7bf91.

7 OpenZeppelin OIF Broadcaster Audit — Notes & Additional Information — 14

https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/src/contracts/BlockHashProverPointer.sol#L27-L36
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/src/contracts/BlockHashProverPointer.sol#L27-L36
https://github.com/openintentsframework/broadcaster/pull/38
https://github.com/openintentsframework/broadcaster/pull/38/commits/807810f6b8a2bdfc380f9c0d0ee0fdbcc6b858b8
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/./src/contracts/BlockHashProverPointer.sol#L23-L25
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/./src/contracts/BlockHashProverPointer.sol#L23-L25
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/./src/contracts/Broadcaster.sol#L29-L31
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/./src/contracts/Broadcaster.sol#L29-L31
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/./src/contracts/Receiver.sol#L70-L72
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/./src/contracts/Receiver.sol#L70-L72
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/./src/contracts/interfaces/IReceiver.sol#L49
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/./src/contracts/interfaces/IReceiver.sol#L49
https://solidity.readthedocs.io/en/latest/natspec-format.html
https://github.com/openintentsframework/broadcaster/pull/39
https://github.com/openintentsframework/broadcaster/pull/39/commits/2d7bf91045c16ea10812ebe29c938283f8f2a54b

N-03 Floating Pragma

Pragma directives should be fixed to clearly identify the Solidity version with which the
contracts will be compiled.

Throughout the codebase, multiple instances of floating pragma directives were identified:

« BlockHashProverPointer.sol hasthe solidity ~0.8.27 floating pragma
directive.

« Broadcaster.sol hasthe solidity ~0.8.27 floating pragma directive.

« Receiver.sol hasthe solidity 70.8.27 floating pragma directive.

« BroadcasterOracle.sol hasthe solidity "~0.8.26 floating pragma directive.

Consider using fixed pragma directives.

Update: Partially Resolved in pull request #40 in commit {811731.

N-04 Missing Docstrings
Throughout the codebase, multiple instances of missing docstrings were identified:

*In BlockHashProverPointer.sol, the BlockHashProverPointer contract
*In BlockHashProverPointer.sol, the implementationAddress function
*In BlockHashProverPointer.sol, the setImplementationAddress function

«In Broadcaster.sol, the Broadcaster contract

«In Broadcaster.sol, the broadcastMessage function

- In Receiver.sol, the Receiver contract

*In Receiver.sol, the verifyBroadcastMessage function

*In Receiver.sol, the updateBlockHashProverCopy function

Consider thoroughly documenting all functions (and their parameters) that are part of any
contract's public API. Functions implementing sensitive functionality, even if not public, should
be clearly documented as well. When writing docstrings, consider following the Ethereum
Natural Specification Format (NatSpec).

Update: Resolved in pull request #41 at commits 141e3da and 411487c.

7 OpenZeppelin OIF Broadcaster Audit — Notes & Additional Information — 15

https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/./src/contracts/BlockHashProverPointer.sol#L2
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/./src/contracts/BlockHashProverPointer.sol#L2
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/./src/contracts/Broadcaster.sol#L2
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/./src/contracts/Broadcaster.sol#L2
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/./src/contracts/Receiver.sol#L2
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/./src/contracts/Receiver.sol#L2
https://github.com/openintentsframework/oif-contracts/blob/acc7f9ca32ccd9e133f00c644251d7ff976edb24/src/integrations/oracles/broadcaster/BroadcasterOracle.sol#L2
https://github.com/openintentsframework/oif-contracts/blob/acc7f9ca32ccd9e133f00c644251d7ff976edb24/src/integrations/oracles/broadcaster/BroadcasterOracle.sol#L2
https://github.com/openintentsframework/broadcaster/pull/40
https://github.com/openintentsframework/broadcaster/pull/40/commits/f8117318b1efe378dfa19898a97f2b09e98aaa0d
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/src/contracts/BlockHashProverPointer.sol#L11-L41
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/src/contracts/BlockHashProverPointer.sol#L11-L41
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/src/contracts/BlockHashProverPointer.sol#L18-L20
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/src/contracts/BlockHashProverPointer.sol#L18-L20
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/src/contracts/BlockHashProverPointer.sol#L27-L36
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/src/contracts/BlockHashProverPointer.sol#L27-L36
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/src/contracts/Broadcaster.sol#L8-L47
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/src/contracts/Broadcaster.sol#L8-L47
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/src/contracts/Broadcaster.sol#L11-L26
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/src/contracts/Broadcaster.sol#L11-L26
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/src/contracts/Receiver.sol#L9-L116
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/src/contracts/Receiver.sol#L9-L116
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/src/contracts/Receiver.sol#L21-L41
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/src/contracts/Receiver.sol#L21-L41
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/src/contracts/Receiver.sol#L43-L66
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/src/contracts/Receiver.sol#L43-L66
https://solidity.readthedocs.io/en/latest/natspec-format.html
https://solidity.readthedocs.io/en/latest/natspec-format.html
https://github.com/openintentsframework/broadcaster/pull/41
https://github.com/openintentsframework/broadcaster/pull/41/commits/141e3dad2e11845b4477d4a941a9564d04b18b77
https://github.com/openintentsframework/broadcaster/pull/41/commits/411487ca85d32ed31e61382e3dafe3f5f742c28d

N-05 Use Custom Errors

Since Solidity version 0.8.4, custom errors provide a cleaner and more cost-efficient way to
explain to users why an operation failed.

Multiple instances of revert and/or require messages were found within
ProverUtils.sol and RLP:

*In ProverUtils, the require(blockHash == keccak256(rlpBlockHeader),
"Block hash not match") statement

*In ProverUtils, the require(accountExists, "Account does not exist")
statement

*In RLP, the rea statement

For conciseness and gas savings, consider replacing require and revert messages with

custom errors.

Update: Resolved in pull request #42 at commit 720d8a1.

N-06 Inconsistent Use of Returns in Functions

Throughout the codebase, multiple instances of inconsistent returned values were identified:

*In BroadcasterOracle.sol, the _hashPayloadHashes function's named return

value
*In BroadcasterOracle.sol, the _getMessage function's named return value
«In RLP.sol, the encode(Encoder memory self) function's named return value
«In RLP.sol, the _decodelength function's named return value

Consider removing the redundant return statement in functions with named returns to

improve code clarity and maintainability.

Update: Resolved in pull request #161 in commit cd44a53 and in pull request #6106 in commit
47c8048.

N-07 Ambiguous Documentation Of bytes|]
Encoding

The RLP library provides an encode function for bytes[] -type values. The implementation
simply concatenates the byte arrays provided in the input. However, this implementation can

7 OpenZeppelin OIF Broadcaster Audit — Notes & Additional Information — 16

https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/./src/contracts/libraries/ProverUtils.sol#L70
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/./src/contracts/libraries/ProverUtils.sol#L70
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/./src/contracts/libraries/ProverUtils.sol#L70
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/./src/contracts/libraries/ProverUtils.sol#L70
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/./src/contracts/libraries/ProverUtils.sol#L116
https://github.com/openintentsframework/broadcaster/blob/3522b4c7c958ce254497b879cc1f6106131c7e3e/./src/contracts/libraries/ProverUtils.sol#L116
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d9f966fc3f7c4eec7f565c2442cc64481e7fb499/contracts/utils/RLP.sol#L371
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d9f966fc3f7c4eec7f565c2442cc64481e7fb499/contracts/utils/RLP.sol#L371
https://github.com/openintentsframework/broadcaster/pull/42
https://github.com/openintentsframework/broadcaster/pull/42/commits/720d8a1e52e21c75952631659ef2281768fc772c
https://github.com/openintentsframework/oif-contracts/blob/acc7f9ca32ccd9e133f00c644251d7ff976edb24/src/integrations/oracles/broadcaster/BroadcasterOracle.sol#L125
https://github.com/openintentsframework/oif-contracts/blob/acc7f9ca32ccd9e133f00c644251d7ff976edb24/src/integrations/oracles/broadcaster/BroadcasterOracle.sol#L125
https://github.com/openintentsframework/oif-contracts/blob/acc7f9ca32ccd9e133f00c644251d7ff976edb24/src/integrations/oracles/broadcaster/BroadcasterOracle.sol#L146
https://github.com/openintentsframework/oif-contracts/blob/acc7f9ca32ccd9e133f00c644251d7ff976edb24/src/integrations/oracles/broadcaster/BroadcasterOracle.sol#L146
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d9f966fc3f7c4eec7f565c2442cc64481e7fb499/contracts/utils/RLP.sol#L174-L176
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d9f966fc3f7c4eec7f565c2442cc64481e7fb499/contracts/utils/RLP.sol#L174-L176
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d9f966fc3f7c4eec7f565c2442cc64481e7fb499/contracts/utils/RLP.sol#L329
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d9f966fc3f7c4eec7f565c2442cc64481e7fb499/contracts/utils/RLP.sol#L329
https://github.com/openintentsframework/oif-contracts/pull/161
https://github.com/openintentsframework/oif-contracts/pull/161/commits/cd44a53a420d2a7d2280216b914b9680d12952d9
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/6106
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/6106/commits/47c804874940c7b8864d7728865b88dbd0f80323
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d9f966fc3f7c4eec7f565c2442cc64481e7fb499/contracts/utils/RLP.sol#L169-L171
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d9f966fc3f7c4eec7f565c2442cc64481e7fb499/contracts/utils/RLP.sol#L169-L171
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d9f966fc3f7c4eec7f565c2442cc64481e7fb499/contracts/utils/RLP.sol#L169-L171

be misleading. A naive interpretation may suggest that the function encodes an array of raw
byte strings. This method would cause information about the length of each individual byte
array to be lost. According to the Yellow Paper specification, an array is encoded as the
concatenation of the encoding of its items. The encode (bytes[] memory input) function
actually expects a list of already encoded items. This requires users to first call
encode(string memory input) (orasimilar encode function) on each item before
passing the resulting array to encode (bytes[] memory input) .

Consider improving the docstrings for the encode (bytes[] memory input) function. The
documentation should clearly state that the function expects an array of already encoded byte
strings, not raw strings, to prevent potential misuse and confusion.

Update: Resolved in pull request #6106 in commit 78f643d.

N-08 Unreachable Checks

Within the _decodelength function of the RLP library, there are multiple unreachable

bytesl(item.load(0)) '= 0x00 checks. The first byte of the item corresponds to the
RLP prefix. In cases where this byte is 0x00, the execution flow would have already branched
in the first two if statements of the function (prefix < LONG OFFSET and prefix <
SHORT OFFSET), so this check can never be reached.

Consider modifying the check to inspect the second element (index 1) instead of the first
(index 0). This will correctly verify that the big-endian expression of the data's length is non-
zero.

Update: Resolved in pull request #6051 in commits d3c84f5 and 3e96235.

N-09 Misleading Documentation

In the RLP contract, a comment within the readBytes function states that "Length is
checked by { toBytes }". However, this is misleading. The length check is not performed
directly by the toBytes function, but rather by the slice function, which toBytes calls.

Consider updating the comment to accurately reflect the fact that the slice function
performs the length check.

Update: Resolved in pull request #6106 in commit 55b33a0.

7 OpenZeppelin OIF Broadcaster Audit — Notes & Additional Information — 17

https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/6106
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/6106/commits/78f643d19e8c8551534c84b5b550ef9dcfd9f062
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d9f966fc3f7c4eec7f565c2442cc64481e7fb499/contracts/utils/RLP.sol#L327-L379
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d9f966fc3f7c4eec7f565c2442cc64481e7fb499/contracts/utils/RLP.sol#L327-L379
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/6051
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/6051/commits/d3c84f5b05993cfb5b630b69f4fe8bea9a8d31ac
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/6051/commits/3e962351be968d527ec27b860595a1a710449a73
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d9f966fc3f7c4eec7f565c2442cc64481e7fb499/contracts/utils/RLP.sol#L242
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d9f966fc3f7c4eec7f565c2442cc64481e7fb499/contracts/utils/RLP.sol#L242
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/6106
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/6106/commits/55b33a00291fa1686d1a12c81c9298b38cade88b

N-10 Non-Canonical Long-string Decoding
Acceptance

The RLP library's decoding function for long strings accepts length specifications that contain
leading zero bytes. However, these encodings are considered non-canonical. This behavior
diverges from other well-known RLP implementations, such as Go-ethereum (geth), which do
not accept them. This discrepancy could lead to interoperability issues where data is
considered valid by this library but invalid by other standard Ethereum clients.

Consider reverting when these non-canonical encodings are provided to align with standard
RLP implementation behavior.

Update: Acknowledged, not resolved. The team stated:

As mentioned in L-03 and L-04, in order to be consistent with other libraries in the
ecosystem (such as ethers.js), we chose to accept non canonical encodings with
leading zeros.

N-11 Inconsistent Integer Base in Inline Assembly
When Setting RLP Prefixes

Inthe RLP.sol library, RLP prefix assignments are performed using inline assembly. The
integer base for these assignments is inconsistent. Both decimal and hexadecimal notations
are used interchangeably across the library. The following instances of hexadecimal bases
have been identified:

e mstore(result, 0Ox01)
e mstore(result, 0x15)

Consider consistently using the decimal integer base to improve code clarity.

Update: Resolved in pull request #6106 in commit 61b695f.

7 OpenZeppelin OIF Broadcaster Audit — Notes & Additional Information — 18

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d9f966fc3f7c4eec7f565c2442cc64481e7fb499/contracts/utils/RLP.sol#L116
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d9f966fc3f7c4eec7f565c2442cc64481e7fb499/contracts/utils/RLP.sol#L116
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d9f966fc3f7c4eec7f565c2442cc64481e7fb499/contracts/utils/RLP.sol#L126
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d9f966fc3f7c4eec7f565c2442cc64481e7fb499/contracts/utils/RLP.sol#L126
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/6106
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/6106/commits/61b695f673dceeafad843dc834593b701d4827bf

Conclusion

The present Open Intents Framework (OIF) audit covered three foundational components
designed to enable secure, standardized, and permissionless cross-chain interoperability: the
ERC-7888 implementation, the RLP Library, and the BroadcasterOracle contract. The
ERC-7888 contracts establish a modular verification framework for authentic cross-chain
messaging. The RLP Library ensures efficient and deterministic data encoding consistent with
Ethereum’s canonical format, while the BroadcasterOracle contract integrates message
broadcasting and verification within OIF’s intent-based protocol, supporting complex multi-
chain settlement flows through modular execution models.

During the audit, one high-severity issue was identified in the Receiver contract, impacting
multi-route message verification, along with a medium-severity issue related to application
validation within the BroadcasterOracle. In addition, several trust assumptions and
opportunities for improving code clarity, maintainability, and overall consistency were noted,
accompanied by recommendations to strengthen validation boundaries and reduce reliance on
trusted components. Overall, the codebase was found to be well-structured, modular, and
clearly documented, enhancing auditability and integration across OIF’s cross-chain
ecosystem.

The OIF team demonstrated strong technical proficiency and responsiveness throughout the
review process. Their willingness to provide detailed explanations, clarify architectural
decisions, and collaborate on issue resolution greatly contributed to the effectiveness of the
assessment and reflected a clear commitment to delivering a robust and extensible
interoperability framework.

7 OpenZeppelin OIF Broadcaster Audit — Conclusion — 19

	OIF Broadcaster Audit
	Table of Contents
	Summary
	Scope
	System Overview
	ERC-7888 Implementation
	RLP Library Implementation
	BroadcasterOracle for the OIF Protocol

	Security Model and Trust Assumptions
	ERC-7888
	RLP Library
	BroadcasterOracle and Route Constraints
	Privileged Roles

	High Severity
	Prover Copies Cannot Be Updated

	Medium Severity
	Potential for Arbitrary Application in Message Verification

	Low Severity
	Missing Version Validation
	Lack of Validation for Payload Length
	RLP Address Encoding Allows Leading Zero Bytes
	RLP Address Decoding Allows Only Fixed Address Lengths
	Stuck Oracle Verifications for Migrated Chains

	Notes & Additional Information
	Gas Optimization
	Incomplete Docstrings
	Floating Pragma
	Missing Docstrings
	Use Custom Errors
	Inconsistent Use of Returns in Functions
	Ambiguous Documentation Of bytes[] Encoding
	Unreachable Checks
	Misleading Documentation
	Non-Canonical Long-string Decoding Acceptance
	Inconsistent Integer Base in Inline Assembly When Setting RLP Prefixes

	Conclusion

