
OpenZeppelin
Contracts v5.5
Diff Audit

| security

October 17, 2025

Table of Contents
Table of Contents __    2

Summary ___    3

Scope __    4

System Overview __    5

Security Model and Trust Assumptions ___    5

Low Severity __    7
L-01 Inconsistent v Normalization Between Signatures 7

L-02 Incorrect Value in isValidERC1271SignatureNow 8

Notes & Additional Information __    8
N-01 Incorrect Comments in isValidERC1271SignatureNow 8

Conclusion __    9

OpenZeppelin Contracts v5.5 Diff Audit − Table of Contents − 2

Type Infrastructure

Timeline From 2025-10-06
To 2025-10-09

Languages Solidity

Total Issues 3 (3 resolved)

Critical Severity
Issues

0 (0 resolved)

High Severity
Issues

0 (0 resolved)

Medium Severity
Issues

0 (0 resolved)

Low Severity Issues 2 (2 resolved)

Notes & Additional
Information

1 (1 resolved)

Summary

OpenZeppelin Contracts v5.5 Diff Audit − Summary − 3

Scope
OpenZeppelin performed a diff audit of the OpenZeppelin/openzeppelin-contracts repository,

between base commit c64a1ed and target commit f5edfc0. This diff highlights all the changes

made between the two commits.

In scope were the following files:

contracts
├──token/ERC20/utils/SafeERC20.sol
└──utils/cryptography
 ├──ECDSA.sol
 └──SignatureChecker.sol

OpenZeppelin Contracts v5.5 Diff Audit − Scope − 4

https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/c64a1edb67b6e3f4a15cca8909c9482ad33a02b0
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/f5edfc0f53ba5fe9d71855d855e0fab9d2ac5aa2
https://github.com/OpenZeppelin/openzeppelin-contracts/compare/c64a1ed..f5edfc0

System Overview
The scope only included the changes made to the SafeERC20 , ECDSA , and

SignatureChecker libraries:

SafeERC20 : The _callOptionalReturn function has been removed, and many of

the functions that relied on it have been refactored. These refactors are intended to

achieve the same functionality, but via the internal _safeTransfer ,

_safeTransferFrom , and _safeApprove functions, which are mostly implemented

in assembly.

ECDSA : Four new functions have been added: tryRecoverCalldata ,

recoverCalldata , parse , and parseCalldata . tryRecoverCalldata and

recoverCalldata both mimic the already existing memory versions of themselves,

called tryRecover and recover . The only difference is where the signature is stored

(either memory or calldata). The parse and parseCalldata functions both take

a dynamic-length signature as input and return the v , r , and s parameters for the

signature.

SignatureChecker : A new function, isValidSignatureNowCalldata , has been

implemented. This function is a version of isValidSignatureNow that uses a

calldata signature parameter. It also refactors the

isValidERC1271SignatureNow function so that it is fully implemented in assembly.

Security Model and Trust
Assumptions
During the audit, the following trust assumptions were made:

The libraries are intended to be integrated as dependencies for other top-level contracts.

It is assumed that they are used correctly as per the documentation within the contracts

and the official OpenZeppelin docs.

•

•

•

•

OpenZeppelin Contracts v5.5 Diff Audit − System Overview − 5

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f5edfc0f53ba5fe9d71855d855e0fab9d2ac5aa2/contracts/token/ERC20/utils/SafeERC20.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f5edfc0f53ba5fe9d71855d855e0fab9d2ac5aa2/contracts/token/ERC20/utils/SafeERC20.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f5edfc0f53ba5fe9d71855d855e0fab9d2ac5aa2/contracts/utils/cryptography/ECDSA.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f5edfc0f53ba5fe9d71855d855e0fab9d2ac5aa2/contracts/utils/cryptography/ECDSA.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f5edfc0f53ba5fe9d71855d855e0fab9d2ac5aa2/contracts/utils/cryptography/SignatureChecker.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f5edfc0f53ba5fe9d71855d855e0fab9d2ac5aa2/contracts/utils/cryptography/SignatureChecker.sol

For the ECDSA and SignatureChecker libraries, it is assumed that users understand

the risks of signature malleability, signature re-use, and the difference between 65-byte

and 64-byte signatures.

For the SafeERC20 library, it is assumed that users understand ERC-20 compliance

and have checked the tokens that are intended to be used with SafeERC20 for

compatibility. This is because SafeERC20 implements extra restrictions on the allowed

behavior.

•

•

OpenZeppelin Contracts v5.5 Diff Audit − Security Model and Trust
Assumptions − 6

Low Severity

L-01 Inconsistent v Normalization Between
Signatures
The parse and parseCalldata helper functions split ECDSA signatures into the v , r , and

s components for both 65-byte and EIP-2098 64-byte encodings. In the 64-byte path, v is

derived from vs and normalized to 27 or 28 . In the 65-byte path, v is taken as-is. This

yields inconsistent outputs for equivalent signatures: 65-byte inputs may return v which is 0

or 1 , while 64-byte inputs return 27 or 28 . Downstream code that expects canonical v can

misbehave, and calls to ecrecover with v equal to 0 or 1 will return the zero address,

potentially causing silent failures.

Consider normalizing v in the 65-byte branch to 27 or 28 , or removing the normalization

from the 64-byte branch to be consistent with each other. In addition, consider updating the

documentation to state that both helpers return the canonical v , r and s values that are

suitable for ecrecover .

Update: Resolved in pull request #5990. The OpenZeppelin Contracts team stated:

Although the difference in the v value depending on whether the signature is 64-bytes

or 65-bytes long may come across as an inconsistency, it’s intentional:

1. For 64-byte signatures: We must normalize because there’s only 1 bit available (0 or

1), and ecrecover requires 27 or 28

2. For 65-byte signatures: It should already be normalized by the signer. If v is 0 or 1, the

signature is malformed and should fail cleanly when passed in to tryRecover

The OpenZeppelin Contracts team included an improved NatSpec on the parse

function to make the process clear.

OpenZeppelin Contracts v5.5 Diff Audit − Low Severity − 7

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f5edfc0f53ba5fe9d71855d855e0fab9d2ac5aa2/contracts/utils/cryptography/ECDSA.sol#L212-L235
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f5edfc0f53ba5fe9d71855d855e0fab9d2ac5aa2/contracts/utils/cryptography/ECDSA.sol#L212-L235
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f5edfc0f53ba5fe9d71855d855e0fab9d2ac5aa2/contracts/utils/cryptography/ECDSA.sol#L240-L263
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f5edfc0f53ba5fe9d71855d855e0fab9d2ac5aa2/contracts/utils/cryptography/ECDSA.sol#L240-L263
https://eips.ethereum.org/EIPS/eip-2098
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f5edfc0f53ba5fe9d71855d855e0fab9d2ac5aa2/contracts/utils/cryptography/ECDSA.sol#L227
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f5edfc0f53ba5fe9d71855d855e0fab9d2ac5aa2/contracts/utils/cryptography/ECDSA.sol#L227
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f5edfc0f53ba5fe9d71855d855e0fab9d2ac5aa2/contracts/utils/cryptography/ECDSA.sol#L227
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f5edfc0f53ba5fe9d71855d855e0fab9d2ac5aa2/contracts/utils/cryptography/ECDSA.sol#L220
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5990

L-02 Incorrect Value in
isValidERC1271SignatureNow
In the SignatureChecker library, within the isValidERC1271SignatureNow function,

there is an incorrect hardcoded value. The comparison against returndatasize() checks if

the return data is greater than 0x19 (or 25) bytes long, whereas it should ensure that the

return data is greater than 0x1f (or 31) bytes long. This check existed in the prior version.

In line 86 of the SignatureChecker library, consider changing 0x19 to 0x1f .

Update: Resolved in pull request #5973.

Notes & Additional
Information

N-01 Incorrect Comments in
isValidERC1271SignatureNow
The inline comments documenting the calldata layout of the

isValidERC1271SignatureNow function in memory misstate the 32-byte slot boundaries

for the dynamic bytes argument. The comments show [0x24 - 0x44] for the signature

offset and [0x44 - 0x64] for the signature length, implying 33-byte spans. However, the

correct inclusive ranges should be [0x24 - 0x43] and [0x44 - 0x63] as both the

signature offset and length are 32 bytes. While the code writes to the correct locations,

inaccurate documentation can mislead maintainers and downstream implementations.

Consider correcting the comments to the exact ranges mentioned above and clarifying the fact

that the ranges are inclusive.

Update: Resolved in pull request #5959 at commit 7a4a7fe. The OpenZeppelin Contracts team

stated:

We fixed it by specifying the correct ranges.

OpenZeppelin Contracts v5.5 Diff Audit − Notes & Additional Information − 8

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f5edfc0f53ba5fe9d71855d855e0fab9d2ac5aa2/contracts/utils/cryptography/SignatureChecker.sol#L86
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f5edfc0f53ba5fe9d71855d855e0fab9d2ac5aa2/contracts/utils/cryptography/SignatureChecker.sol#L86
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/c64a1edb67b6e3f4a15cca8909c9482ad33a02b0/contracts/utils/cryptography/SignatureChecker.sol#L90
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5973
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f5edfc0f53ba5fe9d71855d855e0fab9d2ac5aa2/contracts/utils/cryptography/SignatureChecker.sol#L73-L78
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/5959
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/7a4a7fe6623adff3025a57f846812ecbf788c610

Conclusion
The audited scope included minimal changes, but they were made more complicated due to

the extensive use of assembly. Many of the changes were re-implementations of already

existing functions to leverage calldata for cheaper execution. Overall, the issues found in

the codebase pertained to edge cases, but they should still be corrected given the wide-

ranging use of OpenZeppelin Contracts libraries as dependencies. The changes were found to

be well-thought-out and intentional, and did not break any existing functionality of the prior

version of OpenZeppelin Contracts. The OpenZeppelin Contracts team is appreciated for their

responsiveness and honesty when responding to questions about the audited codebase.

OpenZeppelin Contracts v5.5 Diff Audit − Conclusion − 9

	OpenZeppelin Contracts v5.5 Diff Audit
	Table of Contents
	Summary
	Scope
	System Overview
	Security Model and Trust Assumptions
	Low Severity
	Inconsistent v Normalization Between Signatures
	Incorrect Value in isValidERC1271SignatureNow

	Notes & Additional Information
	Incorrect Comments in isValidERC1271SignatureNow

	Conclusion

